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Abstract

Objective: This study investigates the use of automated pattern recognition meth-
ods on magnetic resonance data with the ultimate goal to assist clinicians in the
diagnosis of brain tumours. Recently, the combined use of magnetic resonance imag-
ing (MRI) and magnetic resonance spectroscopic imaging (MRSI) has demonstrated
to improve the accuracy of classifiers. In this paper we extend previous work that
only uses binary classifiers to assess the type and grade of a tumour to a multiclass
classification system obtaining class probabilities. The important problem of input
feature selection is also addressed.

Methods and Material: Least squares support vector machines (LS-SVMs)
with radial basis function kernel are applied and compared with linear discriminant
analysis (LDA). Both a Bayesian framework and cross-validation are used to infer
the parameters of the LS-SVM classifiers. Four different techniques to obtain mul-
ticlass probabilities as a measure of accuracy are compared. Four variable selection
methods are explored. MRI and MRSI data are selected from the INTERPRET
project database.

Results: The results illustrate the significantly better performance of automatic
relevance determination (ARD), in combination with LS-SVMs in a Bayesian frame-
work and coupling of class probabilities, compared to classical LDA.

Conclusion: It is demonstrated that binary LS-SVMs can be extended to a
multiclass classifier system obtaining class probabilities by Bayesian techniques and
pairwise coupling. Feature selection based on ARD further improves the results.
This classifier system can be of great help in the diagnosis of brain tumours.
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1 Introduction

Contrast-enhanced magnetic resonance imaging (MRI) is a major tool for the
anatomical assessment of tumours in the brain. However, several diagnostic
questions, such as the type and grade of the tumour, are difficult to address
using MRI. The histopathology of a tissue specimen remains the gold stan-
dard, despite the associated risks of surgery to obtain a biopsy. In recent years,
the use of magnetic resonance spectroscopy (MRS), which provides metabolic
information, has gained a lot of interest for a more detailed and specific non-
invasive evaluation of brain tumours. In particular magnetic resonance spec-
troscopic imaging (MRSI), which can provide quantitative metabolite maps
of the brain, is attractive as this may also enable to view the heterogenous
spatial extent of tumours, both in- and outside the MRI detectable lesion.

As individual viewing and analysis of the multiple spectral patterns, obtained
by an MRSI exam, is time-consuming and often requires specific spectroscopic
expertise, it is not practical in a clinical environment. Automatic processing
and evaluation of the data and easy and rapid display of the results as im-
ages or maps is needed for routine clinical interpretation of an exam. At this
point, machine learning techniques and pattern recognition systems come up.
It is known that different (pathological) tissue types contain specific metabolic
patterns [1]. If particular pattern recognition techniques can be automated
and integrated into a clinical decision support system (DSS), MRI and MRS
can actually become part of clinical practice. Several studies have presented
progress in this direction. For example, Preul et al. [2] and Szabo de Edelenyi
et al. [3] conducted some early work. In addition, in the EU framework 6
project INTERPRET [4] a DSS was developed using mainly single-voxel and
multivoxel MR spectra combined with MRI [5].

In the past, many researchers explored the use of pattern recognition to build
classifiers for different tissue types based on MRI or MRS. First, people have
only been using MRI data to distinguish different tissues. It was illustrated
that MRI has only limited potential to specify the type and grade of a tu-
mour [6,7]. Later on, one started to construct classifiers using MRS data based
on artificial neural networks, linear discriminant analysis (LDA), fuzzy tech-
niques, support vector machines (SVMs) and least squares support vector ma-
chines (LS-SVMs) [8–13]. However, only few researchers achieved to combine
the information that is present in MRI and MRS. In [3] one specific contrast
from MRI was combined with spectroscopic information. [14] added extra im-
age variables for fusion with metabolic information and used distribution plots
for classification. In [15], the authors explored the use of LDA and LS-SVMs
to binary classify different tissues. These studies all agreed that the use of
image intensities and spectroscopic information can improve the accuracy of
brain tumour classifiers.
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In this paper, we extend the work of Devos et al. that was presented in [15].
Devos et al. demonstrated that LS-SVMs with a radial basis function (RBF)
kernel often achieve a significantly higher performance than LDA and LS-
SVMs with linear kernel. In addition, it is known that dealing with unbalanced
data sets or small data sets, which is often the case, is problematic if one uses
LDA. The linear decision boundaries might also strongly correlate with the
training cases. Further, all classifiers presented in [15] are binary ones and
are just illustrating the combined use of MRI and MRS. However, if DSSs
have to be implemented, the development of multiclass classifier systems is
of very high interest. Moreover, clinicians are also interested in a measure of
uncertainty when using a DSS. Obviously, it is not enough to output a single
tumour type for the case to be classified, without a measure of its confidence.

This paper is organized as follows. First, Section 2 gives an overview of the
methods and data set. In the next section we introduce the four methods that
are used to handle the feature selection problem. In addition, we describe the
four different methods used to combine pairwise class probabilities. Afterwards
the results are described in Section 5. Finally, the discussion and conclusion
are formulated.

2 Methods and material

In this study, image intensities and spectroscopic information are used to build
multiclass classifier systems. In order to obtain a measure of uncertainty, class
probabilities are calculated. The output of the classifier system for a specific
case are class probabilities for each possible tissue type. This means that
instead of binary output scores (0, for ‘no tumour of this class’ and 1, for
‘tumour of this class’) we get probability values for each type of tumour. Based
on the results of Devos et al., we decide to use LS-SVMs with an RBF kernel
in our study. Both binary LS-SVMs and full Bayesian binary LS-SVMs with
RBF kernel can output pairwise class probabilities [16–18]. For the purpose
of training, testing and (hyper-)parameter estimation we use the KULeuven’s
LS-SVMlab MATLAB/C Toolbox 1 . To obtain class probabilities instead of
binary outputs, the softmax function is used for the LS-SVMs; posterior class
probabilities for the Bayesian LS-SVMs are computed as explained in [18].
Four different methods that combine pairwise probabilities are compared.

Although kernel-based techniques are known to be less sensitive to the high
dimensionality of the input space, reduction may further improve the accuracy
of the classifiers as is demonstrated in [19] on some benchmark data sets. To
handle the important feature selection problem, four methods to separate

1 http://www.esat.kuleuven.ac.be/sista/lssvmlab/ (Accessed: 3 December 2006)
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irrelevant features are explored.

An important improvement of our classifier system is that more tissue types
can be used, compared to the approach in [15]. Thus we are able to classify
not only the main type of a tissue but also the grade and subtype of a tumour.
In this study, tissue classification follows the pathway that is summarized in
Figure 1.

The data are selected from the INTERPRET project database [4]. The clinical
information was acquired in the University Medical Center Nijmegen (UMCN)
and data from 25 patients with a brain tumour and 4 volunteers are used. This
study has been approved by the ethical committee of the UMCN and followed
the rules of the World Health Organization. Each case passed a strict quality
control and the tumour type was determined by a consensus on a histopatho-
logical study. Only patient data where at least two of the three pathologists
agreed about the diagnosis was included. For one patient there was no con-
sensus and that patient is not included in our study. To obtain a sufficiently
large data set, several voxels, situated in the tumour area, were selected from
each patient as described in [20]. The selection of voxels was based on the
spectral information and the MRI data. The four high resolution images were
plotted together with a segmented image in which voxels are clustered by a
model-based algorithm [21]. Since the clustering provided an objective segmen-
tation, this was considered to be helpful for voxel selection. Next, an expert
in spectroscopy selected voxels for each class of pathology only if the con-
sidered spectra were found to be typical for that pathology and if they were
clearly within the affected brain region. Although this method is subjective,
it is chosen because tumours are known to be heterogeneous. We think this
procedure is appropriate since there is no ”ground truth” in the diagnosis of
brain tumours at the voxel level and the number of patients is often limited.
Further, cerebrospinal fluid (CSF) and normal tissue from volunteers and pa-
tients are selected. The data set includes ten classes of pathologies: normal
brain tissue from volunteers and apparently normal tissue from the contralat-
eral half of the brain of patients (218 voxels from 8 persons), CSF from patients
(100 voxels from 8 patients), grade II diffuse astrocytomas (90 voxels from 5
patients), grade II oligoastrocytomas (45 voxels from 2 patients), grade II
oligodendrogliomas (22 voxels from 2 patients), grade III astrocytomas (16
voxels from 2 patients), grade III oligoastrocytomas (28 voxels from 1 pa-
tient), grade III oligodendrogliomas (25 voxels from 2 patients), meningiomas
(48 voxels from 3 patients) and grade IV gliomas (70 voxels from 7 patients).

The data set, containing both MR images and MR spectra, is acquired and pre-
processed as described in [14]. The MR data are acquired on a 1.5 T Siemens
Vision Scanner with CP-head coil. Four different image contrasts are acquired:
T1-weighted image (TE/TR = 15/644ms), T2-weighted image (TE/TR =
16/3100ms), proton density-weighted image (TE/TR = 98/3100ms), gadolin-
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ium enhanced T1-weighted image (15 ml 0.5 M Gd-DTPA). Both water sup-
pressed and unsuppressed proton MR Spectroscopic Images are acquired. The
MRSI data is acquired using a 2D STEAM sequence with the STEAM box
positioned totally in the brain (TR/TE/TM = 2000 or 2500/20/30 ms, slice
thickness = 12.5 or 15 mm, FOV = 200 mm, spectral width = 1000Hz and
NS = 2). Disturbing signals arising from the fat tissue surrounding the skull
are avoided. The location of the STEAM box is determined using the gadolin-
ium enhanced T1-weighted image showing the largest tumour area. The MRSI
slice is centered around an MRI slice of 5 mm. Since there is 1.5 mm of space
between the MRI slices, only one MRI slice is used.

The images are co-aligned and all data are semi-automatically preprocessed as
in [14]. The images are registered with respect to the proton density-weighted
image by shifting and maximizing the spatial correlation. It is assumed that
the MRSI data are registered with the proton density-weighted image since
they are acquired in a consecutive manner. Further, only pixels within the
boundary of the STEAM box are included. Preprocessing of MRSI included
filtering of k-space data by a Hanning filter of 50 % using the LUISE soft-
ware package (Siemens, Erlangen, Germany), zero filtering to 32x32, spatial
2D Fourier transformation to obtain time domain signals for each voxel, cor-
rection for eddy current effects by a technique which prevents occasional oc-
currence of eddy current correction induced artifacts [22,23], water removal
using HLSVD from 4.3 ppm to 5.5 ppm [24], frequency alignment and a sim-
ple baseline correction using an exponential filter with a width of 5 ms followed
by subtraction of the residual of the original signal. All first order phases are
corrected by first manually optimizing the mean spectrum which is calculated
from all spectra in the STEAM box of each patients MRSI data. Next, this
correction is applied to each seperate signal of the patients MRSI data. Fi-
nally, the spectra are normalized using the water signal [25]. Hereafter, all
spectra are quantified using peak integration. Ten different features are ex-
tracted from each spectrum [26]: L2 (0.835-0.965 ppm), L1 (1.2 ppm) + Lac
+ Ala (1.265-1.395 ppm), NAA (1.955-2.085 ppm), Glx (2.135-2.265 ppm), Cr
(2.955-3.095 ppm), Cho (3.135-3.265 ppm), Tau (3.375-3.505 ppm), mI + Gly
(3.495-3.625 ppm), Glx + Ala (3.685-3.815 ppm) and Cr (3.885-4.015 ppm).
The resolution of four MRI images is lowered to the one of the MRSI grid by
averaging pixel intensities within each voxel. The final data set containing 14
variables has also been used in earlier studies [14,15].

In the remainder of this work, existing algorithms and techniques most relevant
for this study are briefly described. For further details about the techniques
used, an extended overview of the literature and more detailed results, the
interested reader is referred to [27].
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3 Feature selection

Today, one of the main problems in machine learning and statistics is keep-
ing track of the most relevant information. For this purpose, feature selection
techniques are addressed. The major aims of feature selection for classification
are finding a subset of variables that result in more accurate classifiers and
constructing more compact models. Therefore, feature selection will filter out
those variables that are irrelevant for the specific model. The selection should
only capture the relevant features while not overfitting the data. Also there is
a reduction in the sample size needed for good generalization [28]. In this work
we mainly focus on feature weighting and feature selection mechanisms. Tech-
niques like principal component analysis are also able to reduce the dimension
of the input space and can extract features, too. However, in this study we
prefer methods that provide features with a direct biological meaning.

3.1 Feature selection methods

As feature selection is one of the most important topics in pattern recognition,
many attempts have been made to develop feature extraction algorithms. An
extensive overview can be found in [29–31]. Basically, three major types of
methods are distinguished [32]. The first category is the filter model [30]. The
feature filter model filters the variables independently of the classifying algo-
rithm. In this way, an initial analysis is performed on the training data and
afterwards the selected features are fed to the classifier. A simple filtering tech-
nique ranks or scores each variable based on some measure like the information
gain criterion, mutual information, cross-entropy measure, Fisher discriminant
criterion or the Kruskal-Wallis test. Apart from these simple ranking methods,
more advanced methods like FOCUS or Relief exist [33,34].

Because the learning algorithm (e.g. the classifier) is never used, the main
advantage of the filter model is its low computational cost. On the contrary,
the weakest point of the filter method is that it completely ignores the impact
of the learning algorithm. The performance of a specific feature subset is not
tested with the classification technique. Therefore, in [35] it is claimed that the
selection procedure should take the learning algorithm into account. This leads
us to the second category of selection methods: feature selection techniques
using the wrapper model [30]. Different subsets of features are tried on the
classification algorithm to estimate the performance of each set, after which
the best set is kept. As an exhaustive search through the input space is not
feasible, heuristic search methods using backward, forward or stepwise variable
selection are often used [36]. In addition, more sophisticated methods like best-
first search are also able to traverse the space of subsets [30,37]. To evaluate
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each subset, n-fold cross-validation or leave-one-out cross-validation can be
used. In [30] it is concluded that the wrapper models result in an increased
accuracy because the interaction between the algorithm and the training set
interaction is considered. The disadvantage of wrapper methods is the high
computational cost of the search.

Apart from the filter and wrapper methods, there also exist some embedded
methods. These methods aim to immediately integrate the variable selection
or weighting procedure into the learning algorithm. This study does not cover
these techniques any further, however, an overview of integrated techniques
can be found in [31].

In our application, we build a classifier system that aims at discriminating
among 10 different classes. To handle the multiclass problem, we decide to
build classifiers between every pair of classes in the data set. This implies that
45 classifiers have to be tuned, trained and tested using cross-validation or sim-
ilar techniques. This strategy immediately excludes the use of an exhaustive
search using for instance stepwise variable selection. In order to avoid tun-
ing the parameters of each LS-SVM classifier a huge number of times, simple
methods are preferred. Hence, in this study, an efficient filter technique seems
to be an appropriate approach. As there is no overall best variable selection
method for LS-SVM classifiers, different filter methods need to be compared
before a multiclass classifier system can be constructed. We decide to use a
filter model using the Kruskal-Wallis test, the Fisher discriminant criterion
and the Relief-F algorithm. Relief-F is an improved version of the original
Relief algorithm [38]. Relief-F can be used for multiclass problems, it is more
robust and it can handle noisy data. In the next paragraphs, the algorithm is
described. To perform variable selection for Bayesian LS-SVMs, an automatic
relevance determination (ARD) mechanism is proposed in [39]. In total, these
four methods are used in our study for variable selection. In the following part
we will discuss these techniques, the experimental setup and the evaluation in
more detail.

3.2 Fisher discriminant criterion

Fisher’s criterion takes the mean and the within class scatter of the groups
into account to compare the correlation between variables and the class la-
bel [40]. For all variables in the training/validation set, a score is obtained and
the features are ranked according to these scores. Hereafter, different models
are built by backwards removing the feature with the smallest Fisher discrimi-
nant criterion score. In this way, different models containing the most relevant
variables are constructed. Using again 10 times stratified random sampling
on the original 2/3 of the data set, the performance of the models on valida-
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tion data is checked. Finally the model with the highest average performance
on validation data is selected and used on the independent test set. In this
way, we use a filter model for selection and check its performance like in the
wrapper approach without having to perform an exhaustive search.

3.3 Kruskal-Wallis test

The Kruskal-Wallis test [41] is a non-parametric alternative to the well-known
one-way independent-samples analysis of variance [42]. The null hypothesis of
the test is that the samples come from populations with equal medians. Given
nC groups, the Kruskal-Wallis test statistic should be compared with the chi-
square statistic with nC − 1 degrees of freedom if the sample size within each
group is large enough (e.g., > 5). This score is derived for all the features so
they can be ranked according to their chi-square value. The same procedure as
in the Fisher criterion approach is used: different models are built by removing
the variables with the smallest chi-square value. In the end, the variables that
are included in the model best performing on validation data, using stratified
random sampling, are selected for use on test data. This procedure selects
optimal variables in a relatively fast way without causing a massive search
process.

3.4 Relief-F

Relief-F is an extended and more robust version of the original Relief algo-
rithm [38]. In contrast to many heuristic measures for feature selection, Relief-
F does not assume conditional independence of the variables. The main idea of
Relief-F is to estimate the quality of features based on how good their values
discriminate between samples that are close. Consecutively random samples
are drawn from the data set. Each time the k (e.g. 10) nearest neighbors of
the same class and the opposite class are determined. Based on these neigh-
boring cases the weights of the attributes are adjusted. As within the two
previous algorithms the variables are ranked and different models are built
by dropping the variable with the smallest weight. The remaining part of the
selection procedure is completely analogous to the one followed in the two
previous methods. Although the Relief-F algorithm is computationally more
expensive and complex than the previous techniques, the cost of an exhaustive
search is still much higher.
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3.5 ARD for LS-SVMs

In [18] the Bayesian evidence framework has been applied to LS-SVMs. Ad-
ditionally the automatic detection of relevant features in the Bayesian frame-
work has been developed in [39]. To illustrate this and because this work con-
centrates on LS-SVMs, we start with the model formulation of the LS-SVM
classifier

min
w,b,e
J = µEW + ζED, (1)

yi(w
Tϕ(xi) + b) = 1− ei, i = 1, ..., N (2)

with

EW =
1

2
wTw, (3)

ED =
1

2

N
∑

i=1

ei
2, (4)

where xi is a vector containing the input features, yi the matching class label
(i.e. −1 or +1), ei the error variable, w a weighting vector and b a bias term.
In the dual space the LS-SVM classifier is then built as follows

y(x) = sign

(

N
∑

i=1

αiyiK(x, xi) + b

)

, (5)

where x is the case to be classified, αi are Lagrange multipliers and K(·,·) is
a positive definite kernel.

In general, the Bayesian LS-SVM framework makes use of three different levels
of inferences. On the first level of inference, the bias b and weight w of the
LS-SVM are determined. The hyperparameters for regularisation (µ, ζ) are
calculated on the second level and the third level performs model comparison
to infer the kernel parameters (e.g. σ, the bandwidth of an RBF kernel). The
strategy of the ARD procedure is to assign a weight to every input feature
by introducing a diagonal weighting matrix U into the kernel function [43].
In this study, an RBF kernel is used and this implies that the kernel has the
form
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K(xi, xj) = exp

(

−
(xi − xj)

T U(xi − xj)

σ2

)

. (6)

Now, U is inferred by maximizing the model evidence on the third level of
inference. As before, the relevant features will have large weights and the less
important features will have smaller weights. Instead of doing a backwards
variable selection procedure based on ARD, we only reweight the original
features according to the weights computed by one iteration of the ARD algo-
rithm. The reason for this approach is that a backwards search would be too
time-consuming in this study.

3.6 Experimental setup and evaluation

For each pair of classes in the total data set, the four selection methods are
compared using stratified random sampling. The data set is 50 times randomly
split in a set used for training, validation and one for testing purposes. One
third of the data is used for the test set, 2/3 is used for training and validation.
The random splitting is done in a stratified way. Model selection and training
happens on the training and validation set while the test set is only used
to check the performance of the obtained classifier. To test statistically the
performance of the feature selection techniques, each performance measure is
averaged over the 50 runs for each single method and every pairwise classifier.
Next, we use the Friedman test [41] over all pairwise classifiers (i.e. 45) since
the performance of the feature selection methods is correlated for each pair of
classes. Further, to study the behaviour of the methods for a specific pairwise
classifier in detail, the Friedman test is used since for every of the 50 runs
the performance of the different methods is correlated as they are used on the
same training and test set.

As performance measure, we use the accuracy (percentage of correctly clas-
sified cases), the sensitivity (the ratio of true positives and the sum of true
positives and false negatives) and the specificity (the ratio of true negatives
and the sum of false positives and true negatives) at a cutoff of 0.50. As some
classes might be unbalanced, it is often more appropriate to use the sensitiv-
ity and specificity. The cutoff of 0.50 is chosen because it is intuitively a very
suitable one. Theoretically it is possible to add a value to the bias term in the
LS-SVM classifier and choose another cutoff to correct for unbalance. However,
in practice, because of the high number of different pairwise combinations (i.e.
45) and the repeated stratified sampling procedure (i.e. 50) the tuning of an
extra correction value becomes a massive task. Therefore we will restrict our-
selves to the value of 0.5. Also, the performance of Bayesian LS-SVMs without
ARD and the well-known classical technique LDA is provided.
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4 Multiclass classification

Until now our discussion focussed on binary classifiers. As mentioned before, if
DSSs need to be developed, the study of multiclass classifiers is essential. How-
ever, the upgrade of binary LS-SVMs to multiclass LS-SVMs is not straight-
forward since SVM-based methods employ direct decision functions [19]. The
typical procedure is to break down the multiclass problem into a number of
smaller binary problems. The procedure to combine these binary classifiers
into a multiclass system can be performed in many ways and overall there
is no single best performing method for all kinds of classification problems.
In the next part, we briefly overview some of the standard methods from the
literature and motivate our decisions.

4.1 Combination schemes

In minimal output coding, each class is represented by a unique binary code-
word using k bits or k classifiers to encode nC = 2k classes [44]. Error correct-
ing output codes use more than the minimal number of bits for encoding to
enhance the generalization of the multiclass classifier system [45]. One-versus-
all is a method that constructs nC binary classifiers for the nC class problem
by separating each class from the combination of all others [46]. A disadvan-
tage of the latter method is that the data set is often very asymmetric after
grouping together nC − 1 classes. When using one-versus-one coding the un-
balance in the data set is often less extreme [47]. For the nC class problem
nC(nC − 1)/2 binary classifiers need to be built. If the number of classes in-
creases to a very large number, this method seems to become cumbersome.
However, when the number of classes is not too abundant, each binary clas-
sifier needs to be trained on a smaller number of data so the training and
tuning of the classifier can actually become faster. To decide the final class for
the one-versus-one approach, a simple voting scheme or max-wins criterion is
used.

In this study we decide to use a one-versus-one combination scheme. Apart
from the fact that the data are more balanced and that the training and
tuning problems are most of the time less computationally intensive, there is
also another good reason to use one-versus-one coding. In practice, medical
doctors often have a clue about the diagnosis for a specific patient. Frequently,
the medical doctors only doubt between two types of tissue such that a binary
classification method is sufficient for diagnosing these patients. In fact, one can
see the binary classifiers as very powerful stand-alone entities that can also
be combined when multiclass classification is needed. Furthermore, clinicians
also want a measure of uncertainty when performing classification; it would
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be interesting to provide class probabilities for every tissue class. All these
issues are addressed in the next part of this section. We cover four different
methods that can combine one-versus-one pairwise class probabilities in order
to retrieve final class probabilities.

4.2 Pairwise combination of probabilities

In the literature, a few authors provide algorithms to obtain class probabilities
based on pairwise combination. In this study, we compare the methods of Price
et al. [48], Hastie and Tibshirani [49] and two algorithms of Wu et al. [50].
The method of Refregier and Vallet [51] and voting [52] are not considered in
this work. The reason to omit the algorithm of Refregier and Vallet is that
some arbitrary choices about the selection of pairwise probabilities have to be
made. It has been pointed out by Price et al. and Wu et al. that the results are
very sensitive to this choice and that finding the optimal selection is often very
expensive. Voting is a very simplistic method and it is illustrated in [50] that
the errors are high compared to the other methods. Before overviewing the
methods and explaining the experimental setup, we state the problem more
mathematically. Given a data set x and a corresponding set of class labels y,
the pairwise probabilities rij are denoted as estimates of µij = P (yk = i|yk = i
or j, xk). As such, the pairwise probabilities rij , which are the probabilities to
predict class i, are retrieved from the binary (i.e. pairwise) classifier that is
only trained on data coming from group i and group j. The main goal of
coupling probabilities is to obtain the probability pi = P (yk = i|xk) based on
the rij values.

4.3 Price et al.

Price et al. develop a method that combines pairwise neural network classifiers
with probabilistic outputs for a handwriting recognition system [48]. Although
originally intended for classification between a limited number of classes, Price
et al. show that the approach is also applicable for problems with more than
ten classes. The final class probabilities are obtained by

pi =
1

∑

j:j 6=i
1

rij
− (nC − 2)

. (7)

Afterwards the probabilities are normalized such that the sum is exactly one.
From the implementation point of view, this method is very simple. On the
other hand, the method does not take into account the number of cases for
each class.
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4.4 Hastie and Tibshirani

In [49], an algorithm which is a special case of the Bradley-Terry model for
paired comparisons is presented. In order to obtain p = (p1; ...; pnC

), the algo-
rithm minimizes the Kullback-Leibler distance criterion such that rij approx-
imates pi/(pi + pj),

l(p) =
∑

i<j

nij

(

rij log
rij

µij

+ (1− rij) log
1− rij

1− µij

)

. (8)

In this equation, the nij variable denotes the sum of the number of data points
in class i and class j, rji = 1 − rij and the model is µij = pi/(pi + pj). One
needs to estimate the pi such that µij is close to rij. Hastie and Tibshirani
establish the iterative procedure, depicted below.

Algorithm 1. Coupling approach by Hastie and Tibshirani

1: Start with some initial guess for pi and corresponding µij

2: Repeat (i = 1, 2, ..., nC, 1, ...) 3 and 4 until convergence

3: pi ← pi

∑

j 6=i
nijrij

∑

j 6=i
nijµij

4: renormalize pi and recompute µij

5: p← p/
∑

pi

Remark that the method takes the number of cases for each class into account.

4.5 Wu et al. - method 1

The first method proposed by Wu et al. makes use of an approximate solution
to an identity [50]. The existence of this solution is proven based on finite
Markov chains. More specifically, Wu et al. propose to solve the equations

pi =
∑

j:j 6=i

(

pi + pj

nC − 1

)

rij ,
nC
∑

i=1

pi = 1, pi ≥ 0. (9)

This can be re-expressed as

Qp = p,
nC
∑

i=1

pi = 1, pi ≥ 0 with Qij =











∑

s:s 6=i ris/(nC − 1), if i = j

rij/(nC − 1), otherwise.

(10)
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The main advantage of this method is that only a linear system needs to
be solved, no iterative procedure is needed. However, in contrast with the
previous algorithm, this method assumes equal weighting (i.e. equal nij).

4.6 Wu et al. - method 2

The second approach by Wu et al. [50] is an improved version of the method
of Refregier and Vallet [51]. Wu et al. hypothesize the minimum problem

min
p

1

2

nC
∑

i=1

∑

j:j 6=i

(rjipi − rijpj)
2 with

nC
∑

i=1

pi = 1, pi ≥ 0. (11)

It is proven that there is a unique solution for p and it can be solved using
the simple linear system







Q 1nCx1

1T
nCx1 0













p

b





 =







0nCx1

1





 with Qij =











∑

s:s 6=i r
2
si, if i = j

−rjirij , otherwise.

(12)

1nCx1 and 0nCx1 are column vectors with respectively nC ones and nC zeros.

4.7 Experimental setup and evaluation

The pairwise combination methods are compared using stratified random sam-
pling. Like in the feature selection analysis, the data set is repeatedly (i.e. 115)
randomly split into a training, validation set and a test set. The pairwise clas-
sifiers are built using the training and validation set. Afterwards, we verify the
performance of each multiclass combination scheme on the test set. Again, the
Friedman test [41] and Tukey’s honestly significant difference criterion [53] are
used to check whether differences in performance are statistically significant.

The performance measures to compare the different methods are the accuracy,
the Brier score [54] and the confusion matrices. The Brier score is related to
the mean square error

1

N

N
∑

j=1

1

nC

nC
∑

i=1

(pij − tij)
2 (13)
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where tij is set to 1 if case j is coming from class i and 0 otherwise. N
denotes the number of cases in the test set, nC is the number of classes and
pij is the predicted posterior probability of class i for case j. This score takes
the amount of uncertainty about the predictions into account. The accuracy
measure is calculated by assigning each case to the class with the highest
posterior probability. Confusion matrices [55] are used to have a clear view on
the discriminative power of the classifier for the different classes. The results
of the multiclass classification system are summarized in a matrix structure,
having on the horizontal axis the actual classification and on the vertical axis
the predicted classification. Percentages are calculated so that the total sum
for each actual class outcome becomes 100 %.

5 Results

In this section the results of the feature selection methods and pairwise class
probability coupling methods are summarized.

5.1 Feature selection

First, to illustrate the importance of good feature selection techniques, we
compare the effect of feeding only a selected number of features and feeding
all available features to a LS-SVM classifier in Table 1. We choose to make a bi-
nary classifier for grade II oligoastrocytomas versus meningiomas and a binary
classifier for grade II oligodendrogliomas versus grade III oligodendrogliomas
because these data sets are almost balanced. For the first classifier, three fea-
tures are selected, for the latter five variables are chosen. The choice of the
variables is based on prior knowledge. A stratified random sampling procedure
is used to calculate the mean percentage of correctly classified cases over 50
runs. Based on the Wilcoxon signed rank test [41], the medians are signifi-
cantly different. Although there are only results presented for two classifiers
in Table 1, one can generalize the observed trend that feature selection can
improve the accuracy of a classifier in this study. Therefore, it is important to
address this topic before building multiclass classifier systems.

The results for the comparison of the four feature selection techniques are
summarized in Figures 2-4. The abbreviations used are ARD for ARD with
Bayesian LS-SVMs, FC for Fisher discriminant criterion with LS-SVMs, K-W
for the Kruskal-Wallis test with LS-SVMs and R-F for Relief-F with LS-SVMs.
The Friedman test and Tukey’s honestly significant difference criterion [53] for
multiple comparison are used to check for significant differences between the
different feature selection methods. Each figure contains a comparison interval
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for the mean rank of the averaged performance measure for every method.
There are significant differences if the intervals are disjoint. It is observed that
the combination of Bayesian LS-SVMs and ARD variable selection generally
performs better than the other three approaches. In Figure 2 one can see that
the accuracy for ARD is significantly higher than the one of the other methods.
Similar results are obtained for the specificity in Figure 3. Concerning the
sensitivity, no significant difference is observed between ARD and Relief-F in
Figure 4. However, there is a significant difference between ARD and the other
two approaches. The differences between the Fisher discriminant criterion, the
Kruskal-Wallis test and Relief-F are statistically not significant.

To have a more detailed look, the averaged accuracies for a number of pair-
wise problems are listed in Table 2. The corresponding class number for a
tissue type is 1 for normal tissue, 2 for CSF, 3 for grade II diffuse astrocy-
tomas, 4 for grade II oligoastrocytomas, 5 for grade II oligodendrogliomas,
6 for grade III astrocytomas, 7 for grade III oligoastrocytomas, 8 for grade
III oligodendrogliomas, 9 for meningiomas and 10 for grade IV gliomas. Each
element represents the mean accuracy over 50 times of stratified random sam-
pling on the test data. The Friedman test and Tukey’s honestly significant
difference criterion [53] for multiple comparison are used to check for sig-
nificant differences between the four different feature selection methods for
each of the pairwise classifiers. If there is any significant difference between
the four methods, the techniques that are not significantly different from the
best performing method are printed in boldface, otherwise, no method’s per-
formance is printed in boldface. The best performing method is underlined.
Further in Table 2, we added the results of Bayesian LS-SVMs without any
feature weighting (BL). Often, the performance of Bayesian LS-SVMs without
feature selection is already good. However, for certain specific problems (e.g.
class 3 versus class 4) the importance of ARD is clear. The performance of
classical LDA is also listed in Table 2. The global trend, observed over all pair-
wise classifiers, is that LDA classifies well between healthy tissue and tumour
tissue, but, when discriminating between different tumour types or grades,
LS-SVM-based methods often perform better. This is further illustrated in
Figure 5 where the accuracy of LDA for each of the 45 pairwise classifiers
is plotted. The first nine classifiers distinguish healthy tissue from all other
types. As can be observed, these accuracies are generally higher than the ones
of all other pairwise problems. According to the Friedman test and Tukey’s
honestly significant difference criterion, LS-SVM-based methods perform sig-
nificantly better than LDA for all the specific problems summarized in Table
2. For the other pairwise problems no significant differences are observed.
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5.2 Multiclass classification

In the remainder of this section we merely focus on combining pairwise class
probabilities into global class probabilities. We restrict the feature selection to
the Bayesian methods with ARD, if it improves the results (e.g. class 3 versus
class 4), to avoid exhaustive training and tuning times.

The results for the averaged accuracy and the averaged Brier score on test set
after 115 times of stratified random sampling are shown in Table 3. Concern-
ing the accuracy, one can observe that the results for the first method of Wu
et al. and the technique by Hastie and Tibshirani are not significantly differ-
ent. According to the test statistic, their performances are significantly better
than the one of the method by Price et al. and the second approach by Wu
et al.. By looking at the averaged Brier scores, one can compare the predic-
tion uncertainties of each method. The results of the approach by Hastie and
Tibshirani seem to degrade if the stopping condition is too loose. If the con-
vergence criterion is taken too high, the iterative procedure produces higher
Brier scores than the other methods. When this stopping condition is small
enough, the method of Hastie and Tibshirani performs equally well as the first
method of Wu et al.. Although the Brier scores are relatively close together,
statistical differences are found according to the Friedman test and Tukey’s
honestly significant difference criterion. Further, the method of Price et al.

seems to produce smaller Brier scores than the approach by Hastie and Tib-
shirani for some stopping criteria, while its accuracy is smaller. By looking
at the results, we observe that the algorithm of Price et al. predicts more ex-
treme class probabilities. As such, when predicting correct probabilities, these
extreme predictions cause smaller Brier scores.

Confusion matrices for each approach are provided in Figures 6-9. The corre-
sponding class number for each tissue type is equivalent to the one introduced
in the previous section. Because of the method’s performance and computa-
tional simplicity, we will focus on the confusion matrix, produced by the first
technique of Wu et al.. It is observed that all normal tissue cases are clas-
sified correctly, no normal tissue is assigned to a tumour class. For CSF an
accuracy of 99.66 % is obtained. The accuracy for grade II diffuse astrocy-
tomas is 96.78 %. Grade II oligoastrocytomas attain an accuracy of 93.97 %.
The performance of grade II oligodendrogliomas (92.05 %) is somehow down-
graded. Grade III astrocytomas obtain an accuracy of 96 %. The accuracies
for grade III oligoastrocytomas and grade III oligodendrogliomas are respec-
tively 99.90 % and 98.80 %. Meningiomas achieve an accuracy of 95.82 %,
Grade IV gliomas obtain 98.53 %. In total, 98.24 % of the cases are classified
correctly. The first method of Wu was also used in combination with classical
LDA instead of the LS-SVM-based approach. The same experimental setup
resulted in an accuracy of 96.31 % for classification using LDA. According to
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the Wilcoxon rank sum test [41] this performance is significantly lower than
the one of the LS-SVM-based approach.

6 Discussion and Conclusion

In this study MRSI and MRI are used to construct a multiclass classifier sys-
tem for brain tumours. Before discussing the results, we make a remark about
the database used. As explained, the same data set has already been used in
earlier studies [14,15,56]. In these studies, the authors used six classes of tissue
types: normal tissue (8 persons), CSF (8 persons), grade II gliomas (9 per-
sons), grade III gliomas (5 persons), grade IV gliomas (7 persons) and menin-
giomas (3 persons). These studies constructed test sets that contain voxels
coming from patients from which also other voxels were selected for training.
Strictly speaking, the test sets were not totally independent. In our work we
are also confronted with this issue. Like in the previous studies, one has to
keep this in mind when interpreting the results. Additionally, in this work we
decided to split the grade II and grade III gliomas further into three different
subtypes (astrocytomas, oligoastrocytomas, oligodendrogliomas). The authors
are aware that the number of cases in each class decreases in this way, also
the number of patients decreases per tissue class. However, the goal of this
study is not to stress on the global performance of the classifier. The aim is to
compare different methodologies and show their importance for brain tumour
classification. Additionally, it is widely known that SVM techniques can handle
higher dimensional input spaces and smaller data sets. Moreover, [50] points
out the fact that the differences between the pairwise combination schemes
become more pronounced with an increasing number of classes. Therefore,
it is important to do an analysis with a reasonable amount of classes (e.g.
10). In a later phase it becomes interesting to verify our findings and the
ones of [14,15,56] in a multi-center study when more data become available
via acquisition through international projects [57,58]. This can possibly result
in prospective studies. Furthermore, we plan to integrate the various tech-
niques discussed in this study in the DSSs that are being developed by the
eTUMOUR consortium [57] and the HealthAgents project [58].

6.1 Feature selection

First, it should be stressed that the omission of relevant features can improve
a classifier as suggested in [30]. If a feature is relevant, this does not automat-
ically mean that it is included in the optimal set. Moreover, if a variable is
irrelevant it can sometimes be used in an optimal variable subset. Therefore,
the selected variables after the feature selection procedure are not discussed.
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This fact also illustrates that it is important to not simply use the pure filter
approach. It is of great importance to use the classifier for model selection.

A possible explanation for the results is that, although weights can become
zero, reweighting the input features via ARD might increase the performance
compared to techniques that are only selecting features. Selecting features is
just a ‘black or white’ decision, while weighting techniques can specifically
rescale a variable according to its importance. In addition, in pure selec-
tion methods the number of input features has to be determined via a cross-
validation analysis or stratified random sampling procedure. In our work, we
fixed the number of stratified random sampling runs to ten for determining
the size of the feature set. Increasing this number might improve the results
for the the non-weighting methods. However, this will also result in longer
training and tuning times. As such, from the practical point of view, using
ARD with Bayesian LS-SVMs is less computationally intensive than an extra
cross-validation analysis or a stratified random sampling procedure to find the
optimal number of features. Finally, in contrast to the softmax function for the
LS-SVMs, when making predictions using Bayesian LS-SVMs and ARD the
unbalance of the data set is taken into account by specifying prior class prob-
abilities. Technically, it is possible to correct for unbalance in non-Bayesian
LS-SVM methods, too. However, this comes down to tuning an extra param-
eter that is a correction on the original bias term of the LS-SVM. As stated
above, this extra tuning procedure makes the development of a classifier a mas-
sive task. Further, although no statistical differences are observed between the
Fisher discriminant criterion, the Kruskal-Wallis test or Relief-F, it seems that
the performance of the latter is partly superior. Though this effect is mini-
mal, it can be explained by the fact that Relief-F is not assuming conditional
independence of the features.

It is observed that the performance of Bayesian LS-SVMs without feature
weighting is sometimes fairly good. This is important because leaving out
ARD saves training and tuning time. Depending on the problem, one can
decide to use ARD or to omit it. Further, one can argue to use simple and
fast methods like LDA for discriminating between tumour tissue and healthy
tissue and to apply more advanced methods for determining the specific type
and grade of a tumour. Remark that the performance of LDA sometimes
seems to be better than the one of LS-SVMs with Kruskal-Wallis test, Fisher
criterion or Relief-F. However, as mentioned before, one has to keep in mind
that a correction on the bias of the LS-SVM methods was not tuned, causing
a downgraded performance.

Finally, the facts, discussed above, and the results illustrate the usefulness of
the Bayesian LS-SVMs with ARD in the context of applications with strict
time and hardware limits. Dynamic DSSs, containing self-learning classifiers,
require methods that can relatively fastly train and tune parameters and per-
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form feature selection. Bayesian LS-SVMs with ARD fulfill these requirements
and obtain good results. On the contrary, it can be meaningful to use LS-SVMs
and feature selection methods based on cross-validation or repeated stratified
sampling in static (not self-learning) DSSs. Also a correction on the bias term
can be calculated to handle unbalanced problems since there are no direct
time constraints.

6.2 Multiclass classification

The use of class probabilities obtained via LS-SVM classifiers and pairwise
class probability combination schemes for multiclass classification is illus-
trated. Four different methods that combine pairwise class probabilities into
global class probabilities are compared.

In general, the trends agree with the observations in [50]. Wu et al. argue that
the differences between the algorithms increase when the number of classes
raises (e.g. 10). In particular, this has a stronger impact on the performance
of the method by Hastie and Tibshirani. In our 10 group study we also no-
tice this tendency when the stopping conditions for the Hastie and Tibshirani
method are not strict enough. In these cases, a downgraded performance is
observed for this algorithm. Like in [50], it is noticed that the results of the
approach by Hastie and Tibshirani are dependent on the stopping condition.
In our analysis, modifying the stopping criterion led to an improvement in the
performance of this method. But, since the choice of the condition is appli-
cation dependent, it is not clear how to choose a suitable stopping criterion
in advance, while avoiding an extensive amount of computationally intensive
iterations. This is an important drawback of the method of Hastie and Tib-
shirani. As such, the first non-iterative procedure by Wu et al. is preferred.
This method can be implemented in a very straightforward way.

As mentioned before, the main aim of this study is to introduce new method-
ologies for the diagnosis of brain tumours. Although, due to the nature of the
data set and the retrospective character of this study, one has to be careful
when drawing medical conclusions, certain trends are evident when looking at
the confusion matrix obtained by the method of Wu et al.. Normal tissue is
clearly recognized by the classifier. Some tumour classes are mixed with CSF
voxels. This can be clarified by the fact that all the CSF voxels are coming
from patients; this may have an influence. Grade II diffuse astrocytomas are
classified rather well. Most of the time, this tumour class is mixed up with
CSF and grade II oligoastrocytomas. A possible explanation for the relatively
poor performance of grade II oligodendrogliomas is the small number of cases
in this class. Often, the same voxel is repeatedly misclassified when doing
repeated stratified sampling. This problem is more persistent in small data
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sets. Grade III astrocytomas are sometimes mixed with the lower grade dif-
fuse astrocytomas. Since the number of cases for this class is small, more data
should be acquired. The accuracy for grade III oligoastrocytomas and grade
III oligodendrogliomas is fairly good, however, also more data should be ac-
quired. Meningiomas tend to be mixed with grade II diffuse astrocytomas and
grade IV gliomas. Conversely, grade IV gliomas are sometimes confused with
grade II diffuse astrocytomas and meningiomas.

Compared to classical LDA, the LS-SVM-based approach achieves a signifi-
cantly higher performance. This is also noted in [15] and can be explained by
the fact that certain subtypes of tumours are hard to distinguish with a linear
method. This is also supported by the results of the feature selection analysis
where LDA mainly attains a high performance for the classification between
healthy tissue and tumour.
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Captions of tables

Table 1: Average performance on test sets over 50 runs of stratified random
sampling for a LS-SVM classifier with and without feature selection.

Table 2: Averaged accuracy on test sets over 50 runs of stratified random sam-
pling. The best performing method and not significantly different approaches
are printed in boldface. The score of the best performing technique is under-
lined. LS-SVM-based methods perform significantly better than LDA accord-
ing to the Friedman test.

Table 3: Mean accuracy and Brier score on test set over 115 runs of stratified
random sampling. The accuracies of the technique by Hastie and Tibshirani
(H-T) and the first method of Wu et al. are significantly higher compared to all
others. In contrast to the other approaches, the Brier score of the technique
by Hastie and Tibshirani (if the stopping criterion is sufficiently small, e.g.
≤ 10−3) and the first method of Wu et al. are not significantly different.
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Table 1

all features selection of features

grade II oligoastrocytomas vs meningiomas 0.9826 0.9955

grade II oligodendrogliomas vs grade III oligodendrogliomas 0.9880 0.9973
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Table 2

ARD FC K-W R-F BL LDA

1 vs 3 0.9984 0.9922 0.9946 0.9942 0.9926 0.9913

2 vs 3 0.9873 0.9822 0.9822 0.9848 0.9914 0.9784

3 vs 4 0.9853 0.9618 0.9649 0.9591 0.9613 0.9209

3 vs 8 1.0000 0.9858 0.9895 0.9932 0.9958 0.9926

4 vs 9 0.9935 0.9781 0.9806 0.9942 0.9987 0.9903

5 vs 8 0.9920 0.9867 0.9867 0.9867 0.9947 0.9760

6 vs 8 0.9738 0.9800 0.9754 0.9892 0.9969 0.9738

7 vs 10 0.9938 0.9906 0.9850 0.9956 0.9956 0.9806
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Table 3

H-T (10−1) H-T (10−2) H-T (10−3) H-T (10−4) H-T (10−5) Price et al. Wu et al. 1 Wu et al. 2

Accuracy 0.9826 0.9829 0.9829 0.9829 0.9829 0.9817 0.9824 0.9817

Brier score 24.784 10−3 3.7268 10−3
2.8853 10−3

2.8923 10−3
2.8941 10−3 3.1379 10−3

2.9179 10−3 2.9640 10−3
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Captions of figures

Figure 1: Scheme denoting the various steps to perform tissue classification.
First, the MRSI and MRI data are acquired using an MR scanner. The spectra
are preprocessed, peak integrated and image intensities are averaged within
each voxel. Prior to one-versus-one classification, relevant features are ex-
tracted. Class probabilities are generated by pairwise coupling.

Figure 2: The comparison intervals for the mean rank of the averaged accuracy
on test set. The accuracy of ARD is significantly higher compared to Relief-F
(R-F), Fisher discriminant criterion (FC) or the Kruskal-Wallis test (K-W).

Figure 3: Comparison intervals for the mean rank of the averaged specificity
on the test set. The specificity of ARD is significantly higher compared to the
one of Relief-F (R-F), Fisher discriminant criterion (FC) or the Kruskal-Wallis
test (K-W).

Figure 4: Comparison intervals for the mean rank of the averaged sensitivity
on the test data. The sensitivity of Relief-F (R-F) is not significantly different
from the sensitivity of ARD. The latter is significantly different from Fisher
discriminant criterion (FC) and the Kruskal-Wallis test (K-W).

Figure 5: The averaged accuracies for LDA on test set for each of the 45
pairwise classifiers. The first nine pairwise classifiers distinguish healthy tis-
sue from all other tissue types. In general, the accuracy of LDA for these
classification problems tend to be higher.

Figure 6: Confusion matrix of the method by Hastie and Tibshirani (with
convergence criterion 10−3) over 115 runs of stratified random sampling on
test set. On the horizontal axis the true classes are indicated, the vertical axis
represents the test set predictions.

Figure 7: Confusion matrix of the method by Price et al. over 115 runs of
stratified random sampling on test set. On the horizontal axis the true classes
are indicated, the vertical axis represents the test set predictions.

Figure 8: Confusion matrix of the first method by Wu et al. over 115 runs of
stratified random sampling on test set. On the horizontal axis the true classes
are indicated, the vertical axis represents the test set predictions.

Figure 9: Confusion matrix of the second method by Wu et al. over 115 runs of
stratified random sampling on test set. On the horizontal axis the true classes
are indicated, the vertical axis represents the test set predictions.
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Fig. 1. Luts et al.
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Fig. 2. Luts et al.
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Fig. 3. Luts et al.
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Fig. 4. Luts et al.
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Fig. 5. Luts et al.
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Fig. 6. Luts et al.
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Fig. 7. Luts et al.
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Fig. 8. Luts et al.
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Fig. 9. Luts et al.
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